Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases

نویسندگان

  • Fayza Daboussi
  • Mikhail Zaslavskiy
  • Laurent Poirot
  • Mariana Loperfido
  • Agnès Gouble
  • Valerie Guyot
  • Sophie Leduc
  • Roman Galetto
  • Sylvestre Grizot
  • Danusia Oficjalska
  • Christophe Perez
  • Fabien Delacôte
  • Aurélie Dupuy
  • Isabelle Chion-Sotinel
  • Diane Le Clerre
  • Céline Lebuhotel
  • Olivier Danos
  • Frédéric Lemaire
  • Kahina Oussedik
  • Frédéric Cédrone
  • Jean-Charles Epinat
  • Julianne Smith
  • Rafael J. Yáñez-Muñoz
  • George Dickson
  • Linda Popplewell
  • Taeyoung Koo
  • Thierry VandenDriessche
  • Marinee K. Chuah
  • Aymeric Duclert
  • Philippe Duchateau
  • Frédéric Pâques
چکیده

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes...

متن کامل

Homing endonucleases: DNA scissors on a mission.

Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers ...

متن کامل

The new genomic editing system (CRISPR)

Over the past decades, progression in genetic element manipulation, and consequently, the treatment of diseases has been remarkable. It is worth noting that these genetic manipulations perform at different levels, including DNA and RNA. The earlier genomic editing techniques, including MN, ZFN , TALEN , performing their functions by creating double-stranded breaks (DSBs), and after breakage, th...

متن کامل

Epigenetic Modifications of Host Genes Induced by Bacterial Infection

Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...

متن کامل

A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing

Genome editing with designer nucleases such as TALEN and CRISPR/Cas enzymes has broad applications. Delivery of these designer nucleases into organisms induces various genetic mutations including deletions, insertions and nucleotide substitutions. Characterizing those mutations is critical for evaluating the efficacy and specificity of targeted genome editing. While a number of methods have bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012